前言
本文介绍了如何整合搜索引擎elasticsearch与springboot,对外提供数据查询接口。
业务介绍
我的个人网站需要对mysql数据库内存储的京东商品进行模糊查询(模仿淘宝商品搜索),所以选择了将数据导入elasticsearch随后使用他来进行关键词查询。前端只需发送用户搜索的关键词和分页参数(可选),即可返回商品数据(json格式)
开发环境
组件介绍:
- elasticsearch:搜索引擎,用于存储待搜索数据
- logstash:用于将mysql中的商品数据同步到搜索引擎中
- elasticsearch-head(可选):elasticsearch可视化工具
- kibana(可选):elasticsearch可视化工具
本文测试环境:
- springboot:1.5.16
- elasticsearch:2.3.5(springboot1.5仅支持2.x的es)
- logstash:6.5.4
开发步骤
使用Docker部署elasticsearch
- docker下一键启动es,可根据需要的版本号对语句做修改
1
| sudo docker run -it --rm --name elasticsearch -d -p 9200:9200 -p 9300:9300 elasticsearch:2.3.5
|
注意到该命令:
- –rm参数:容器终止后销毁
- -d:后台进程
- -p 9200:9200 -p 9300:9300:开放了9200端口和9300端口
得到如图:
此时打开网页localhost:9200即可查看状态,显示类似为:
1 2 3 4 5 6 7 8 9 10 11 12
| { "name" : "Ant-Man", "cluster_name" : "elasticsearch", "version" : { "number" : "2.3.5", "build_hash" : "90f439ff60a3c0f497f91663701e64ccd01edbb4", "build_timestamp" : "2016-07-27T10:36:52Z", "build_snapshot" : false, "lucene_version" : "5.5.0" }, "tagline" : "You Know, for Search" }
|
注意:docker的es默认对0.0.0.0公网开放
下载并使用logstash并导入数据
本文中要导入的是pm_backend下的表pm_jd_item内的全部京东商品数据
详细步骤参考:
http://blog.codecp.org/2018/04/16/Elasticsearch%E4%B9%8B%E4%BD%BF%E7%94%A8Logstash%E5%AF%BC%E5%85%A5Mysql%E6%95%B0%E6%8D%AE/
最终编写的jdbc.conf为:
schedule => "* * * * *"
默认为每分钟同步一次
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| input { jdbc { jdbc_connection_string => "jdbc:mysql://localhost:3306/pm_backend" jdbc_user => "root" jdbc_password => "xxxxxxxxxx" jdbc_driver_library => "xxxxxxxx/mysql-connector-java-5.1.6.jar" jdbc_driver_class => "com.mysql.jdbc.Driver" jdbc_paging_enabled => "true" jdbc_page_size => "5000" statement=> "select * from pm_jd_item" schedule => "* * * * *" type => "pm_jd_item" } }
output { elasticsearch { hosts => "localhost:9200" index => "pm_backend" document_type => "%{type}" document_id => "%{id}" } stdout { codec => json_lines } }
|
在logstash目录下执行命令,完成数据的导入:
1
| bin/logstash -f jdbc.conf
|
得到如图:
同步完成后,使用elasticsearch-head查看(或者用kibana,请随意):
整合进springboot
- 添加pom.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| <!-- 搜索引擎:elastic-search--> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>2.4.6</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-elasticsearch</artifactId> </dependency>
|
- 修改application.properties
1 2 3 4 5 6
| # elasticsearch spring.data.elasticsearch.cluster-name=elasticsearch #节点地址,多个节点用逗号隔开 spring.data.elasticsearch.cluster-nodes=127.0.0.1:9300 #spring.data.elasticsearch.local=false spring.data.elasticsearch.repositories.enable=true
|
- 在需要进行搜索的实体类上添加@Document、@Id、@Field等标注,本例为JdItem.java
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| @Document(indexName = "pm_backend", type = "pm_jd_item") public class JdItem implements Serializable {
@Id private Integer id;
@Field(type = FieldType.Long) private Long itemId;
@Field(type = FieldType.Long) private Long categoryId;
@Field(type = FieldType.String) private String name;
|
- 添加JdItemRepository继承ElasticsearchRepository
1 2 3
| public interface JdItemRepository extends ElasticsearchRepository<JdItem, Integer>{ }
|
- 编写JdItemController中的查询接口findJdItemByName
代码截取自个人项目京东价格监控,仅供参考!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
@ApiOperation(value="查询商品", notes="查询商品") @RequestMapping(value = "/findJdItemByName", method = {RequestMethod.GET}) public ResponseData<List<JdItem>> findJdItemByName( @ApiParam("用户输入的商品名") @RequestParam(value = "itemName") String itemName, @ApiParam("页码索引(默认为0)") @RequestParam(value = "startRow", required = false, defaultValue = "0") int startRow, @ApiParam("每页的商品数量(默认为10)") @RequestParam(value = "pageSize", required = false, defaultValue = "10") int pageSize ){ ResponseData<List<JdItem>> responseData = new ResponseData<>(); try {
FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery().add(QueryBuilders.matchPhraseQuery("name", itemName), ScoreFunctionBuilders.weightFactorFunction(100)).scoreMode("sum").setMinScore(10); Pageable pageable = new PageRequest(startRow, pageSize); SearchQuery searchQuery = new NativeSearchQueryBuilder().withPageable(pageable).withQuery(functionScoreQueryBuilder).build(); Page<JdItem> jdItems = jdItemRepository.search(searchQuery); responseData.jsonFill(1, String.valueOf(jdItems.getTotalPages()), jdItems.getContent()); } catch (Exception e) { e.printStackTrace(); responseData.jsonFill(2, e.getMessage(), null); } return responseData; } }
|
- 运行springboot
调用findJdItemByName接口,得到:
整合分词器功能
请参考:https://github.com/medcl/elasticsearch-analysis-ik
参考
Docker安装ES & Kibana:
https://www.jianshu.com/p/fdfead5acc23
Elasticsearch之使用Logstash导入Mysql数据:
http://blog.codecp.org/2018/04/16/Elasticsearch%E4%B9%8B%E4%BD%BF%E7%94%A8Logstash%E5%AF%BC%E5%85%A5Mysql%E6%95%B0%E6%8D%AE/
关注我
我是蛮三刀把刀,后端开发。主要关注后端开发,数据安全,爬虫等方向。
来微信和我聊聊:yangzd1102
Github个人主页:
https://github.com/qqxx6661
原创博客主要内容
- Java知识点复习全手册
- Leetcode算法题解析
- 剑指offer算法题解析
- Python爬虫相关技术实战
- 后端开发相关技术实战
- SpringCloud实战
同步更新公众号及以下全部博客:
1. Csdn
http://blog.csdn.net/qqxx6661
2. 知乎
https://www.zhihu.com/people/yang-zhen-dong-1/
3. 掘金
https://juejin.im/user/5b48015ce51d45191462ba55
4. 简书
https://www.jianshu.com/u/b5f225ca2376
个人公众号:Rude3Knife
如果文章对你有帮助,不妨收藏起来并转发给您的朋友们~